
INV ITED
P A P E R

Asynchronous Neuromorphic
Event-Driven Image Filtering
Sparse coding of spatio–temporal signals lowers computational cost and raises the

efficiency of visual processing.

By Sio-Hoı̈ Ieng, Christoph Posch, Senior Member IEEE, and Ryad Benosman

ABSTRACT | This paper introduces a new methodology to

process asynchronously sampled image data captured by a

new generation of biomimetic vision sensors. Unlike conven-

tional cameras, these neuromorphic sensors acquire data not

at fixed points in time for the entire array (frame-based) but

sparse in space and time, i.e., pixel-individually and precisely

timed only if new information is available (event-based). In this

paper, we introduce a filtering methodology for asynchronous-

ly acquired gray-level data from an event-driven time-encoding

imager. The paper first studies the properties of level-crossing

sampling parameters in order to define threshold level

properties and associated bandwidth needs. In a second stage,

we introduce asynchronous linear and nonlinear filtering

techniques. Examples are shown and examined on real data.

Finally, the paper introduces a methodology to compare frame-

based versus event-based computational costs. Implementa-

tions and experiments show that event-based gray-level

filtering produces equivalent filtering accuracy as compared

to frame-based ones. The main result of this work shows that,

based on the number of operations to be carried out, beyond

3 frames per second (fps), event-based processing outper-

forms frame-based processing in terms of computational cost.

KEYWORDS | Asynchronous filtering; computer vision; event-

based imaging; filtering algorithms; image filtering; image

processing; level-crossing sampling; neuromorphic vision

I . INTRODUCTION

Conventional imaging devices are built to sample scenes at

a fixed frequency involving all pixels of the sensing device.

This process naturally leads to high computational cost and

inefficient use of resources. If scene dynamics are known

in advance and the system obeys the Shannon–Nyquist

sampling theorem, often only very few pixels change be-
tween two consecutive frames, leading to the acquisition of

large amounts of redundant data. This temporal ineffi-

ciency is most striking when the system is dealing with

temporarily static or slow changing scenes. Given the

frame structure of the acquired image data, all existing

image processing techniques operate on entire images,

thus often handling information already processed in

previous frames.
An alternative to acquisition using a fixed frequency is

to sample a time-varying signal not on the time axis but the

amplitude axis, leading to nonuniform sampling rates that

match the dynamics of the input signal (Fig. 1). This

sampling approach is often referred to as asynchronous

delta modulation [2] or continuous-time level-crossing

sampling [3].

Recently, this sampling paradigm has advanced from
the recording of 1-D signals to the real-time acquisition of

2-D image data. The asynchronous time-based image sen-

sor (ATIS) described in [1] contains an array of autono-

mously operating pixels that combine an asynchronous

level-crossing detector and an exposure measurement cir-

cuit. Each exposure measurement by an individual pixel is

triggered by a level-crossing event. Hence, each pixel in-

dependently samples its illuminance, through an integra-
tive measurement, upon detection of a change of a certain

magnitude in this same illuminance, so establishing its

instantaneous gray level after it has changed. The result of

the exposure measurement (i.e., the new gray level) is

asynchronously transmitted off the sensor together with

the pixel’s x; y-address. As a result, image information is

not acquired frame-wise but conditionally only from

parts in the scene where there is new information. Or in
other words, only information that is relevantVbecause

unknownVis acquired and transmitted and needs to be

processed.

Manuscript received May 20, 2014; revised July 25, 2014; accepted July 29, 2014. Date

of publication September 11, 2014; date of current version September 16, 2014.

The authors are with the Institut de la Vision, University Pierre and Marie Curie, Paris

75012, France (e-mail: sio-hoi.ieng@upmc.fr).

Digital Object Identifier: 10.1109/JPROC.2014.2347355

0018-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1485

Fig. 1 shows the general principle of asynchronous
imaging spaces. As discussed above, frames are absent

from this acquisition process. However, they can be recon-

structed, when needed, at frequencies limited only by the

temporal resolution of the pixel circuits. Static objects and

background information, if required, can be recorded as a

snapshot at the start of an acquisition. From then on, only

pixel positions that have undergone a change and have

consequently been remeasured are updated [1]. Moving
objects in the visual scene describe a spatio–temporal

surface at very high temporal resolution.

This novel paradigm of visual data acquisition calls for a

new methodology in order to efficiently process the sparse,

event-based image information without sacrificing its

beneficial characteristics.

This paper presents a methodology for filtering asyn-

chronously acquired gray-level data in a way to preserve as
much as possible the temporal accuracy provided by the

event-driven acquisition. The aim is to process each in-

coming event, rather than processing an entire frame.

Although it would be possible to recreate frames from the

event-driven sampling data and to apply classic filtering

techniques, this approach, as we will show, is not useful as

it removes all benefits of the event-driven mechanism, i.e.,

low data volume at high temporal resolution. In this work,
linear and nonlinear filtering techniques are introduced

and several standard filters are implemented and evaluated

in order to assess their ability to process nonuniformly

sampled data. Comparisons with conventional image-

based processing are provided to emphasize the difference,

especially in terms of computational costs.

II . PREVIOUS WORK

A. Asynchronous Image Sensors
Silicon retinas have been pioneered by the work of

Mahowald [4]. Several artificial retinas based on the

address–event representation (AER) [5] have been built
such as the ones presented in [6]–[15].

The latest generation silicon retina sensor ATIS used in

this work is a time-domain encoding image sensors with

304 � 240 pixel resolution [1]. The sensor contains an

array of fully autonomous pixels that combine an

illuminance change detector circuit and a conditional

exposure measurement block. The change detector indi-

vidually and asynchronously initiates the measurement of
an exposure/grayscale value only ifVand immediately

afterVa brightness change of a certain magnitude has

been detected in the field of view of the respective pixel.

The exposure measurement circuit in each pixel individ-

ually encodes the absolute instantaneous pixel illuminance

into the timing of asynchronous event pulses, more

precisely into interevent intervals. Since the ATIS is not

clocked like conventional cameras, the timing of events
can be conveyed with a very accurate temporal resolution

at the order of microseconds. The time-domain encoding

of the intensity information automatically optimizes the

exposure time separately for each pixel instead of imposing

a fixed integration time for the entire array, resulting in

exceptionally high dynamic range and improved signal-to-

noise ratio. The pixel-individual change-detector-driven

operation yields almost ideal temporal redundancy sup-
pression, resulting in maximally sparse encoding of the

image data.

B. Asynchronous Filtering
Signal filtering is generally applied before initiating

more advanced processing techniques. In image process-

ing, it is useful for feature detection and extraction

(corners, edges, etc.), for preprocessing operations (signal
smoothing, contrast enhancing, etc.), or for prediction

purposes. Asynchronous, continuous-time signal coding

and processing based on nonuniform sampling has been

widely studied (e.g., [3] and [16]). One of the earliest

applications of the level-crossing sampling in image pro-

cessing can be found in [17] where the technique has been

applied to compress binary images. However, filtering

operations have been explored mainly for 1-D signals. So
far, results have been obtained for synthesis of finite im-

pulse response (FIR) and infinite impulse response (IIR)

filters. In [18], the filter impulse response is sampled via

interpolation at the sampling times of the asynchronous

signal to filter. The resulting system has a more complex

structure than conventional filtering schemes; however,

this is compensated by the sparsity of the signal. In [19],

the state–space presentation is used to avoid the need to
resample the filter impulse response. In [20], a monodi-

mensional convolution product algorithm is presented.

The idea is to interpolate the two signals to allow identical

sampling times for both of them. As a result conventional

convolutions can be used. The main advantage is the pos-

sibility to convolute the input signal with any filter defined

by sampled impulse response. One rare achievement on

Fig. 1. Spatio–temporal space of imaging events: static objects and

scene background are acquired first. Then, dynamic objects

trigger pixel-individual, asynchronous gray-level events after each

change. Frames are absent from this acquisition process.

Ieng et al. : Asynchronous Event-Driven Image Filtering

1486 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

event-based visual signal filtering has been implemented

on a very large scale integration (VLSI) architecture [21].

Local convolutions are applied to active pixels based on the
assumption that the 2-D filter is separable into two

monodimensional convolutions. The pixel intensities are

computed by event integration over time before being

processed by the filter. However, this filter architecture is

only suitable for linear filtering.

III . LEVEL-CROSSING SAMPLING

An event in the context of this work is defined as the pair ‘‘gray-

level value and its timestamp’’ at a given pixel coordinate. It is a

sample of the luminance signal captured at the level of a single

pixel along with its ‘‘exact’’ time of acquisition. The notion of

event is important in emphasizing the scene-driven sampling
process. Let us assume a signal expressed as a real function g, of

time t. An event is then a pair ðtk; gðtkÞÞ, and each sample is

acquired according to the generic rule

8k 2 N; gðtkþ1Þ ¼ f gðtkÞð Þ (1)

where f is an adequately chosen constraint on the signal

amplitude g. A frequently used f is the affine function

f gðtkÞð Þ ¼ gðtkÞ � Dg: (2)

This means that each sample gðtkÞ is determined by adding

or subtracting a constant positive term Dg to the previous

one gðtk�1Þ. Fig. 2 shows an example waveform and result-
ing sampling points in time where f is an affine function.

Considering the function implemented in several neu-

romorphic sensors, f is defined as

f gðtkÞð Þ ¼ eagðtkÞ (3)

where a 2 R and ea ¼ expðaÞ. a is positive (respectively

negative) if g is increasing (respectively decreasing). This

equality is interesting as it says that each sample is just a

multiple of the previous one, or equivalently, the kth

sample is captured each time g increases or decreases by a

factor of ea.

We focus on (3) as it allows to compress large signal
variations into a smaller domain and to encode a larger

dynamic range. The sampling accuracy increases as ea is

approaching 1 in (3). Since ea cannot be infinitely close to 1,

this sampling operation is behaving as a low-pass temporal

filter. Its cutoff frequency is related to the signal amplitude

since the sampling accuracy decreases with increasing

signal amplitude and to the threshold value a that sets the

sampling resolution in the amplitude dimension. Without
loss of generality, we can consider one single pixel i that

measures the light intensity gi. The kth sampled value giðtkÞ
satisfies

giðtkÞ ¼ eagiðtk�1Þ: (4)

This is equivalent to detecting a constant change in log

intensity as used in both the dynamic vision sensor (DVS)

[13] and the ATIS [1] sensors. The sequence of sampling

times tk, with t0 being the time of the first sample, depends

on the threshold a and the signal gi. The sampling of

logðgiÞ is slightly different from a standard level-crossing

sampling as we do not predefine the set of levels to cross.

However, we show the ordinate axes using a semi log scale
in Fig. 2 to ease comprehension. The instantaneous

sampling rate is defined by the time interval between two

consecutive samples, hence the highest frequency compo-

nent one can recover from the sampled signal limited by the

smallest sampling frequency

Fe ¼ min
k

1

Dtk

� �
(5)

with Dtk ¼ tk � tk�1.
This is equivalent to look for the maximum time

intervals tk � tk�1. If we note g�1
i the inverse function of gi,

then we have to look for the maximum of the sequence

Dtk ¼ tk � tk�1 ¼ g�1
i eagiðtk�1Þð Þ � tk�1: (6)

If D ¼ ðg�1
i o eagiÞ � Id, with Id being the identity

function, then finding the maximum of fDtkg is equivalent

to maximizing D.

g is, in general, not invertible as it is, in general, not

monotonic over its definition domain. However, if we

observe g over a small neighborhood, it is, in practice,

possible to define a local inverse function of g.

Let us examine the case of a monospectral signal giðtÞ ¼
A cosð!0tÞ þ B to derive a closed-form relation linking the
signal parameter and a to Fe. Given the ith pixel, the event-

based sampling operation produces samples satisfying

8k 2 N; log
giðtkÞ

giðtk�1Þ

� �����
���� ¼ a (7)

Fig. 2. Level crossing sampling.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1487

with a now assumed being positive. We thus have either
giðtkÞ ¼ eagiðtk�1Þ or giðtkÞ ¼ e�agiðtk�1Þ if fgiðtkÞg is either

increasing or decreasing. There is no definite cutoff

frequency as we are used to when dealing with constant

rate sampled signals. For such asynchronous sampled

signals, if Fe is the smallest sampling rate, then we define

the filter cutoff frequency Fc ¼ Fe=2. This choice is

legitimated by the fact that frequency components are

the most suppressed for parts of the signal sampled at the
lowest rate. This is equivalent to look for the largest time

interval between two consecutive samples: maxkfDtkg.

A. Sampling Cutoff Frequency
According to (6), we examine the case of a mono-

spectral signal giðtÞ ¼ A cosð!0tÞ þ B, with T ¼ 2�=!0.

We assume the constants 0 � A � B to ease the

understanding of the calculation. For other values of A
and B, the principle is the same, but the analysis needs to

be split into subintervals, defined by the zero crossings of

the function itself and the zero crossings of its first

derivative.

We introduce the two following functions: d� and dþ.

They are the inverses of the intensity function gi. gi depends

on t, therefore to determine the time t of every incoming

event, we need to invert gi. The inverse of gi, d�, and dþ are
expressed as recursive functions to follow the acquisition

principle of the ATIS that uses relative contrast changes.

Because the cosine function has different inverse functions

depending on its monotonicity, we set d� as the inverse of gi

over the intervals ½0; T=2½ while dþ is the one over �T=2; T�

d� : 0;
T

2

� �
! 0;

T

2

� �

t 7! d�ðtÞ ¼ 1

!0
cos�1 e�a A cosð!0tÞ þ Bð Þ�B

A

� �
(8)

and

dþ :
T

2
; T

� �
! T

2
; T

� �

t 7! dþðtÞ¼T� 1

!0
cos�1 ea A cosð!0tÞþBð Þ�B

A

� �
:

(9)

Both functions are real valued if the argument of cos�1 is

within the interval ½�1; 1�, i.e.,

� 1 � e�a A cosð!0tÞ þ Bð Þ � B

A
� 1: (10)

Since cos�1 is a decreasing function of t for t 2 ½0; T=2�,
the upper bound of the interval of definition of d� is

reached when the argument is equal to �1 (i.e.,
d�ðtÞ ¼ T=2). This value is equal to

t� ¼ 1

!0
cos�1 eaðB� AÞ � B

A

� �
: (11)

The same explanation is valid for dþ with the upper bound

being reached when the argument is equal to 1 (i.e.,
dþðtÞ ¼ T)

tþ ¼ 1

!0
cos�1 e�aðBþ AÞ � B

A

� �
: (12)

With these functions, it is possible to calculate

iteratively the timestamps of the sampling satisfying (7)

8k 2 N; tk ¼
d�ðtk�1Þ; if tk�1 2 ½0; t��
dþðtk�1Þ; if tk�1 2 T

2
; tþ

	

.

�
(13)

The way tk is defined, there is no sample in the intervals

�t�; T=2½ and ½tþ; T� since d� and dþ are not defined over

these two intervals.

For a correct sampling of g, an intuitive choice is to have a
sufficiently small. The bandwidth of the sampling operation

is related to the value of a. Thus, we are looking for a direct

relation between the cutoff frequency and the value of a.
Let us define the sequence fDtkgk2N ¼ ftk � tk�1gk2N ,

and the function D

D : R ! 0; t�½[�T=2; tþ½ �
t 7! DðtÞ (14)

with

DðtÞ ¼ d�ðtÞ � t; if t 2 ½0; t�½
dþðtÞ � t; if t 2�T=2; tþ�.

�

Consequently, DðtkÞ ¼ Dtk (see Fig. 3). D is maximum
when gi is close to its maximal amplitude, i.e., when t is

close to 0 or T, respectively. Hence, we have the relation

Fc ¼ Fe

2
¼ 1

2ðt1 � t0Þ
¼ 1

2Dð0Þ

if we assume the first sample is taken at t0 ¼ 0. This value

can be related directly to a

1

2Fc
¼ Dð0Þ ¼ 1

!0
cos�1 e�aðAþ BÞ � B

A

� �
: (15)

This is defined in R if the argument of the cos�1 is within
the interval ½�1; 1�. Thus, a should satisfy the inequalities

0 � a � log
Bþ A

B� A

� �
: (16)

ðBþ AÞ=ðB� AÞ is the ratio of the maximum value of the

signal to its minimum value, and a needs to satisfy (16).

Ieng et al. : Asynchronous Event-Driven Image Filtering

1488 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

This result is also intuitive as it means that the ratio of

any two consecutive samples cannot be larger than

ðBþ AÞ=ðB� AÞ. The smallest sampling frequency is
reached when a is maximum, i.e., a ¼ logððBþ AÞ=
ðB� AÞÞ and we have Fc ¼ 2=Dð0Þ ¼ 2=T.

Without loss of generalty, we can drop index i as all

considerations equally apply to any single pixel in the

array. In what follows, gk will refer to giðtkÞ, where k
expresses the kth sample of gi.

The requirements given in (16) alone are not sufficient

to guarantee a Nyquist compliant sampling of the mono-
spectral signal. If e�a is not small enough, there may be a

risk that the sample gk ¼ e�agk�1 might be outside the

interval ½B� A; Bþ A�; consequently, we need an addi-

tional constraint on a.

This constraint can be formulated as: 8k 2 N;
gk ¼ e�agk�1 ¼ e�akg0. Then, gk exists only if

B� A � e�akg0 � Bþ A: (17)

If we are considering the decreasing part of the cosine, this

constraint is

1

k
log

g0

B� A

� �
� a � 1

k
log

g0

Bþ A

� �
: (18)

The lower bound of a in (18) is maximum when
g0 ¼ Bþ A, and this is also the value of a for which we

achieve cutoff frequency Fc. Consequently, a has to be

0 � a � 1

k
log

Bþ A

B� A

� �
: (19)

As expected, the more samples are needed, the smaller a
has to be.

Fig. 4 shows an example of the level sampling applied

to a cosine with the following parameters: A ¼ 2, B ¼ 3,

and k ¼ 17, where k is the number of samples, then

a 	 2:35� 10�3. We can observe the increasing density of

samples as the signal value decreases. The value of a,

chosen according to (19), produces k samples for each

half-period of the cosine.

Natural signals are usually much more complex than a

monospectral signal, however we can see from this analysis

that level crossing sampling effects low-pass filtering of the
signal. a is set before the signal acquisition, but it must be

chosen according to the signal’s parameters A; B and to the

needed number of samples k.

The acquisition based on (3) is then extended to a 2-D

imaging sensor of L� C pixels. For the forthcoming

sections, we are using the following definitions.

• The signal gi acquired independently by the pixel

ðxi; yiÞT is the function

gi : Rþ !Rþ

t7! giðtÞ: (20)

• We define I, a spatio–temporal intensity function

I : N2 � Rþ !Rþ

ðxi; yi; tÞ7! Iðxi; yi; tÞ ¼ giðtÞ: (21)

With this definition, I is also the set of functions fgig
for i 2 ½1; L� C�. I is the asynchronous spatio–temporal

signal which cannot be processed in a standard image
processing way unless frames are built at some given

frequency. Constructing frames is always possible using

the ATIS sensor [1] at arbitrary points in time, however, as

we will show, generating frames from the output of an

asynchronous, data-driven sampling sensor is not the

preferred path to follow as one loses all the advantages of

this signal sampling strategy.

Fig. 4. Monospectral signal of parameters A ¼ 2, B ¼ 3, and k ¼ 17

where k is the number of samples and consequently with

a
 2:35� 10�3.

Fig. 3. Function of the time interval between two consecutive samples

with a ¼ 4:85� 10�2, A ¼ 2, and B ¼ 3. The shaded band outlines

the interval for which D is not defined on R.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1489

IV. ASYNCHRONOUS FILTERING

The asynchronous filter applied to I is assumed to be a

composition of a temporal function h2 and a spatial

function h1 such that

If ¼ ðh1 � h2ÞðIÞ: (22)

h2 is a monodimensional filter acting on each

individual pixel. It is chosen to implement the level-

crossing sampling as in Section III. Here one could also

apply additional asynchronous filtering techniques such as

the one presented in [22] which mainly consist of

reconstruction or interpolation of the original signal.

h1 implements a 2-D filtering operation on a local
neighborhood �i, centered on a pixel i and activated at ti. If

the filtering is linear, it is a 2-D convolution product of

Iðu; v; tÞ, for ðu; vÞT 2 �i and t � ti, with h1. If i is the latest

updated pixel at time ti, then all neighboring pixel

timestamps in �i are going to be lower than ti. The

convolution with h1 can be written as

ðh1 � IÞðxi; yi; tiÞ ¼
X
ðu;vÞT2�i

h1ðxi � u; yi � vÞIðu; v; tiÞ: (23)

The major difference with a classical 2-D convolution

appears when a new event is triggered at ti þ dt, for the

same pixel i. Because of the recursive form, only one term

has to be updated in the convolution

ðh1� IÞðxi; yi; ti þ dtÞ¼ ðh1� IÞðxi; yj; tiÞ� h1ð0; 0ÞIðxi; yi; tiÞ
þ h1ð0; 0ÞIðxi; yi; ti þ dtÞ: (24)

This equality shows that an asynchronously filtered signal

is perfectly suited for an iterative algorithm. The

implementation is computationally efficient since we just

need to perform one subtraction and one addition using

the previously computed values to obtain the new one.
This is more efficient than the frame-based convolution if

only portions of the pixels in I have changed, which is true

in most cases, the only requirement being to be able to

store in a buffer previously filtered and unfiltered signals

values. This approach is fundamentally different from

existing event-based convolution techniques found in the

literature because they operate on local spike integrations

over a space-time neighborhood to estimate relative
intensities of pixels [21], [23]. In our case, there is no

need to integrate spikes since intensities are natively

provided by the sensor.

The asynchronous filtering is an iterative operation that

is suited for parallelized processing. Since a local spatial

filtering is performed each time an event is received, an

independent thread can be created to filter the signal at the

active pixel’s neighborhood. Fig. 5 illustrates the asynchro-
nous and iterative filtering summarized by Algorithm 1.

Algorithm 1: Iterative asynchronous spatio–temporal

filtering

1: for each Iðxi; yi; tiÞ do

2: define the spatial neighborhood �i of ðxi; yiÞT
3: compute the asynchronous temporal filtering

ðh2
 IÞðu; v; tiÞ for ðu; vÞ 2 �i if h2 is specified

4: compute the spatial filtering ðh1
 ðh2
 IÞÞðu; v; tiÞ
over �i incrementally according (24).

5: store the filtered value in If : If ðxi; yi; tiÞ ¼
ðh1
 ðh2
 IÞÞðxi; yi; tiÞ.

6: end for

Fig. 5. Asynchronous spatio–temporal filtering mechanism: the vision sensor outputs a stream of events that are processed within a

neighborhood � by h1. The output of h1 is a single event which amplitude is the filtered value. The filter h2 is some temporal filter

applied to I. In our case, it is reduced to the sampling operation performed by the sensor.

Ieng et al. : Asynchronous Event-Driven Image Filtering

1490 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

The operator
 represents either a linear filtering
operation or a nonlinear filtering operation. If a standard

linear filtering is applied,
 is equivalent to the

convolution product �.
Algorithm 1 shows a generic filtering operation. We

will now move to a practical implementation of three

asynchronous filters that have been implemented and

tested on event-based signal output by the ATIS [1]: a

Gaussian smoothing filter, a bilateral filter, and a Canny
edge detector.

Usually, an unknown signal is processed on the fly, i.e.,

there is no prior knowledge on the signal before starting

the sampling process. In this case, there is no explicit way

to choose an optimal value for the threshold parameter a.

For the following experiments, a was tuned to a value of

about 10% relative change in pixel intensity, typically used

with the ATIS sensor [1].

A. Gaussian Filter
Gaussian filters are easily parametrizable and separa-

ble. If the filter is assumed to be centered, the only

parameter to set is the standard deviation. We are referring

to the Gaussian function G as

GðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2��2
p e�

x2

2�2 : (25)

B. Bilateral Filter
The bilateral filter has been introduced in [24] as a

smoothing and edge-preserving filter. It is a nonlinear

operator composed of two kernels that measure indepen-

dently the spatial and photometric consistencies

If ðx; y; tÞ ¼ S
ðu;vÞ2�

Iðu; v; tÞg1 ðx; yÞ � ðu; vÞk k2� �
�g2 Iðx; y; tÞ � Iðu; v; tÞk k2
� �

: (26)

The kernels are similarity or weighting functions that

decrease relative to the pixels’ ‘‘difference.’’ The g1 and g2

kernels are measuring, respectively, the spatial range and

the luminance range between two pixels ðx; yÞT and ðu; vÞT .

Centered Gaussians are usually chosen for g1 and g2, but if
g1 is set to 1, the bilateral filter is a simple linear low-pass

filter. The bilateral filter is not linear, thus it cannot be

implemented as a convolution operation. However, the

general scheme described in Algorithm 1 is still valid. The

only change is to replace (24) by (26) in Algorithm 1.

Algorithm 2: Gaussian gradient operator

Input: Iðx; y; tÞ
Output: Stream of gradient events rðG � IÞðx; y; tÞ
1: for each event Iðx; y; tÞ do

2 : A p p l y A l g o r i t h m 1 w i t h h1 ¼ @G=@x ¼
ð�x=

ffiffiffiffiffiffi
2�
p

�3Þ expð�ðx2=2�2ÞÞ to Iðx; y; tÞ to have

ð@G � I= @xÞðx; y; tÞ ¼ Ix.

3: Apply Algorithm 1 with h1 ¼ @G=@y ¼ ð�y=ffiffiffiffiffiffi
2�
p

�3Þ expð�ðy2=2�2ÞÞ to Iðx; y; tÞ to have ð@G�
I=@yÞðx; y; tÞ ¼ Iy.

4: return rG � Iðx; y; tÞ.
5: end for

C. Edge Detector
Edges are interfaces separating two different homoge-

neous regions in the focal plane. They are defined as the

locations where the signal rate of change is the steepest. To

classify pixels as edge pixels, one needs to compute the
spatial gradient. The higher the gradient’s amplitude is, the

more likely the pixel belongs to an edge. The gradient itself

is simply computed by performing a convolution of the

visual signal with a gradient operator such as the Sobel or

Prewitt’s filters or a Gaussian first derivative. The Gaussian

first derivative is interesting since it smoothes the visual

information and applies the derivative to the Gaussian

function instead of the signal

@ðG � IÞ
@w

¼ @G

@w
� I with w ¼ x or y: (27)

Event-based sensors are native contour detectors as pixel

events occur most frequently around moving edges. The
main processing needed here is to identify and suppress

nonedge-related events and to localize edges as precisely as

possible. The Canny edge detection method [27] is a good

candidate to be implemented in an event-driven way as it

produces thin and continuous edges if thresholds are

correctly chosen. The Canny detector steps can then be

summarized as:

• compute the spatial gradient;
• suppress the nonlocal maximum in the gradient’s

direction to ensure thin edges;

• apply a hysteresis thresholding to label pixels that

do not have high gradient responses.

Three parameters have to be chosen to obtain a

valuable edge detection: the Gaussian standard deviation

and the upper and lower thresholds. The algorithm for

each method is detailed by Algorithm 3.

Algorithm 3: Canny edge detector

Input: �1, �2, Iðx; y; tÞ
Output: Stream of event marked as edge Ieðx; y; tÞ.
1: for each event Iðx; y; tÞ do

2: Apply Algorithm 2 to get rðG � IÞðx; y; tÞ.
3: Apply the nonlocal maxima suppression within �.

4: Apply a hysteresis thresholding on the gradient

amplitude with �1 and �2, respectively, being the

high and low threshold values for pixel in �.
5: Mark Iðx; y; tÞ as edge if the maximum suppression

operation did not suppress Iðx; y; tÞ.
6: return Ieðx; y; tÞ.
7: end for

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1491

The Canny edge detector is implemented based on two

temporary matrices. The first matrix stores the last value of

pixel spatial gradient. The second matrix stores the label of

the pixel according to the upper and lower thresholds: 0

not an edge, 1 potential edge, and 2 reliable edge.

V. EXPERIMENTS AND RESULTS

The ATIS neuromorphic sensor [1] is used to capture

indoor and outdoor dynamic scenes. All experiments are

carried out with a static camera, observing a natural

scene. The outdoor sequence is a traffic scene captured

with the camera placed on the sidewalk, facing the street.

The indoor scene uses a checkerboard that is randomly

moving in front of the camera. The indoor sequence is

designed to test and measure the Canny edge detector,

since we can extract a ground truth from the known

geometry of the checkerboard. Each asynchronously
filtered result is compared to the frame-based filtering

results.

Fig. 6. Event-based spatio–temporal Gaussian low-pass filter. The top row of figures shows raw images of a traffic scene. The middle row contains

the same data after asynchronous filtering. Frames are generated at an equivalent frame rate of 100 fps. The bottom row shows the power

spectrums computed for frames generated from the spatio–temporal signal (unfiltered left and filtered right). Concentric circles delimit 50%,

25%, and 10% of the raw signal magnitude (frequencies are increasing from the center to the border). The purple curve shows the theoretic signal

amplitude attenuation due to the low-pass filter.

Ieng et al. : Asynchronous Event-Driven Image Filtering

1492 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

A. Gaussian Filter
The first set of experiments are tested using a Gaussian

low-pass filter with the outdoors sequence. Each active

pixel is filtered according to Algorithm 1. The filter is

tested for several increasing values of � (ranging from 0.5

to 2). The scene has static portions which are updated

rarely, and also regions which are frequently updated

because of the car traffic. Fig. 6 shows the result with a

Gaussian low-pass filter with � ¼ 1 applied to the
sequence which lasts 18 s, with a mean event rate of

2.8 kevents/s. The first row shows sample frames selected

randomly from a set of frames created at a rate of 100

frames per second (fps). The first row represents the raw

signal while the second shows the event-based smoothing

filtering. The last row shows the 2-D Fourier transform

power spectrums of both the raw image (left) and the

filtered image (right) generated by the event-based
filtering. The magnitude spectrum of the filtered signal

shown on the right of the last row shows a clear

attenuation of the high-frequency components (the

frequency is increasing from the center toward the edges

of the plot). Three circles are added to indicate zones at

which the power is reduced to 50%, 25%, and 10%. One

can clearly see that the filtering is effective. In the present
case, it is difficult to compare with frame-based filtering,

because it is difficult to set a ground truth measurement of

noise in the stream of events. Without controlling the

amount of noise in the acquisition, it is impossible to assess

which method performs better.

B. Bilateral Filter
The bilateral filter is applied to the same traffic

sequence. The experimental procedure is similar to the

Gaussian filtering. The kernel measuring the luminance

similarity g2 and the spatial similarity g1 is set with

�1 ¼ 0:75 with the same standard deviation value as the

Gaussian function in the linear smoothing (�2 ¼ 1) to

ensure comparison. We briefly show that the edge

preserving filter is producing the expected results:
smoothing the homogeneous parts of the signal and

keeping as much as possible the sharp transitions at edges.

Fig. 7 is showing different filtered signals as meshes to

outline the edge preserving effect of the bilateral filter.

The raw signal is shown in the top-left figure, the result of

the asynchronous bilateral filter is shown in the top-right

figure, the frame-based bilateral filter’s result is shown in

Fig. 7. Asynchronous bilateral filter compared to the frame-based bilateral and low-pass linear filters. The input signal for the bilateral filters is

the same as the one used in Fig. 6. The amplitude of the raw signal ðjIjÞ is shown in the top-left figure, the amplitude of the asynchronous

bilateral filtered signal ðjIbajÞ is shown in the top-right figure, the amplitude of the frame-based bilateral filtered signal ðIbf jÞ is shown in the

bottom-left figure, and the low-pass filtered signal ðjIg jÞ is shown in the bottom-right figure. The same Gaussian function is used for both low-pass

and bilateral filters. Edge sharpness is more preserved as shown for both bilateral filters, while the homogeneous regions are smoothed as

expected.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1493

the bottom-left figure, and, finally, for comparison

purpose, the signal filtered with the g2 kernel alone (i.e.,

a linear luminance low-pass filter) is shown in the bottom-
right figure. In Fig. 8, we also show the relative errors

(normalized by the max of jIbaj) between the asynchronous

and nonasynchronous bilateral filters’ results and between

the asynchronous bilateral and Gaussain filters’ results.

The mean errors are 2.2% and 7.1%, showing clearly

comparable performances of both bilateral filters.

Another quantitative measurement is also produced to

show the amount of blur around the edges by fitting
Gaussians a set of randomly selected edges. The idea is

that the fitting Gaussians’ variance increases with the

image blur. To estimate the variances, we applied the

procedure presented in [25]. The estimated blur is com-

pared with the one produced by applying g2 kernel alone

and the one produced by the frame-based bilateral filter.

If we define �ba, �bf , and �g as the mean standard

deviations for the asynchronous bilateral filtered signal,

the frame-based bilateral filtered one, and the low-pass

filtered one, we get

�ba

�g
¼ 0:92 and

�bf

�g
¼ 0:91: (28)

Statistically, both event-based and frame-based bilateral

filters keep sharper edges than the asynchronous Gaussian

low-pass filter. This shows that both frame-based and
event-based bilateral filters achieve similar performances.

C. Canny Edge Detection
This experiment tests the asynchronous edge detection

using a gradient filter to label events as either edges or not.

The Canny edge detector described in Algorithm 3 has

Fig. 8. Error surfaces of the bilateral filtered signals (normalized by the max of jIbaj). The left figure shows the relative error between the

event-based and frame-based filtered signals ðjIba � Ibf jÞ, with a mean value of 2.2%. The right figure shows the same relative error between the

event-based and Gaussian filtered signals ðjIbf � Ig jÞ, with a mean value of 7.1%.

Fig. 9.Gradient direction distributions at edges detected by the asynchronous Canny detection (center) and the frame-based Canny edge detector

(right). The ground truth is extracted from the frame generated at time t. The distribution of both results is similar.

Ieng et al. : Asynchronous Event-Driven Image Filtering

1494 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

been implemented and applied to a scene showing a

moving checkerboard. The checkerboard is generating

straight edges on the sensor’s focal plane. The Canny edge
detection performances are assessed by examining the

detected edges’ locations and orientations. We have

generated frames from the event stream at a frame rate

of 60 fps. A ground truth is built to evaluate the detector

performances. We have estimated the homographies

mapping the real checkerboard to each generated frame

with the classic computer vision technique called the

direct linear transformation [26]. The homographies allow
to map, on each frame, the checkerboard’s edges. A

detected edge is considered as correct if it coincides

exactly with an edge given by the ground truth. Fig. 9

shows the detected edges whose directions are coded by a

gray-level scale. The asynchronous edge detection is shown

in the middle, while the frame-based Canny edge detection

is shown on the right. In both cases, the detector

parameters (Gaussian standard deviation, threshold va-
lues) are set to the same values (� ¼ 1:5, high and low

thresholds, respectively, set to 0.15 multiplied by the mean

value of �i defined in (23) and 0.03 multiplied by the mean

value of �i). The distributions of the gradient directions are

plotted below the edge images. We can observe similar

performance for the orientations estimation: the mean

values and the standard deviation for each set of directions

are as follows:
• the first set of directions for the asynchronous

detector and the frame-based Canny’s detector:

�0.512 � 0.131 rad, �0.529 � 0.110 rad;

• the second set of direction for the aynchronous

detector and the frame-based Canny’s detector:

1.054 � 0.089 rad, 1.025 � 0.117 rad.

As for the detection rates shown by Fig. 10, we can see

that the frame-based Canny detector shows a better
performance. The detection rate for the sequence is

around 76% with the frame-based Canny, while the

asynchronous Canny’s detection rate is around 51%.

However, one interesting effect of the asynchronous filter

can be observed at the beginning of the sequence: while

the frame-based Canny detection rate drops because of a

sudden change in the acceleration (however, it recovers its

performances a few iterations after), the asynchronous
detection rate remains slightly more stable. The asynchro-

nous formulation of the edge detector seems to be less

sensitive to steep acceleration changes since events are

generated at an almost continuous rate that better matches

the scene’s dynamic.

Fig. 10.Asynchronous Canny edge detection result (plain curve) compared to the frame-based Canny algorithm (dashed curve). The same filtering

parameters are used for both cases: Gaussians set with the same variance, identical upper and lower thresholds for the hysteresis

thresholding. The detection rate is the ratio of the number of pixels detected as edge to the number of ground truth edges.

Fig. 11. Canny edge detector implemented asynchronously and applied to the traffic scene. The image on the left shows the manually marked

pixels used as ground truth for evaluating the edge detector results shown in the right. Blue pixels outline moving objects while red pixels show

the nonmoving ones. Both sets of pixels are used indifferently to evaluate the detection rate.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1495

A second edge detection has been carried out on
another sequence, showing a real traffic scene (see

Fig. 11). For that experiment, the ground truth is a set of

randomly selected frames in which we have manually

extracted all edges on 16 randomly chosen images, i.e.,

without the use of any edge detection algorithm one can

find in the literature. In this case, a detected edge is

accounted for as correct if its distance to an edge pixel of

the ground truth is at most 1 pixel. The mean detection
rate for several values of the Gaussian variance is displayed

in Table 1. The frame-based detector is only slightly better

than the asynchronous detector. Finally, the increase of

the detection accuracy as � decreases is complying with

the localization term L, introduced in Canny’s original

work [27], if the Gaussian derivative filter is used. This is

an interesting observation since we are checking for how

close the detected pixels are to the manually extracted
edges. The localization term is actually maximized if the

pixels detected as edges are as close as possible to the

center of true edges. The localization is defined as

L /
h01ð0Þ
�� ��ffiR
R h021 ðxÞdx

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4

3�
ffiffiffi
�
p

s
(29)

with / standing for ‘‘proportional to.’’

The performances of the filters using both event- and

image-based filtering provide comparable results, with

little advantage for the frame-based implementation.

However, these performances are established using only

spatial criteria that tend to be in favor of the frame-based

acquisition. The ground truth we have built assesses only
the spatial performances of the filters and not necessarily

the temporal ones. This has been done because it is

difficult to create asynchronous data from frames, and the

amount of computations that would be needed to match a

frame-based temporal precision of 1 �s on the sequence

and on large portions of time goes beyond our computation

capacities. It is also important to emphasize that

neuromorphic sensors are noisy. In the carried out
experiments, noise was not removed and has been

accounted for information. This increases the amount of

performance errors, especially when edges’ locations are at

stake.

In Section VI, we will show that the overall comparison

of computational efficiency is in favor of event-based

filtering. For comparable performances, event-based filter-

ing will be shown to be at least 5–10 orders of magnitude
more efficient than frame-based filtering.

VI. RESOURCE CONSUMPTION:
EVENT-BASED VERSUS FRAME-BASED
FILTERING

This section provides a quantitative analysis of the

computation cost when gray-level frames are generated

from the asynchronous output according to two different

strategies: at a fixed event rate or at a fixed frequency.

Frames generated at a constant event rate are scene
dependent. If pixels update quickly but only locally, the

problem of processing the same information several times

will arise similarly to the case where frames are generated

at fixed frequency. At some point, frame-based filtering

computational cost should be equivalent to that of the

event-based filtering. We are aiming at identifying the

event rate and the frame rate at which both filtering

techniques consume the same resources.
To establish the amount of operations performed by

both frame- and event-based filtering techniques, we set

the following definitions.

• Let us consider the spatial convolution given by

(23) over a neighborhood �i of dimensions S� S.

For one pixel, this operation is made of S2 products

and S2 � 1 additions. For one given pixel, this set

of operations defines a calculation unit that is
referred to as u. This is exactly the computation

performed on one pixel for both frame-based and

event-based filterings.

• N is the total number of captured events.

• K is the number of frames generated from the N
events.

• n is a fixed number of events per frame.

The calculation unit defined for the convolution is just an
example; it can be extended to a more complex set of

operations. The only required assumption is that a single

pixel be processed identically by both synchronous or

asynchronous algorithms. For that reason, we do not

consider the iterative form of the convolution given by

(24), which requires less computation resources.

A. Frames Generated at Constant Events Rates
We now examine the case of frames generated at a

constant event rate equal to n. Because N, K, and n are

integers, then

9q! 2 NjN ¼ Knþ q; with q G n: (30)

This means that K frames are generated for the N acquired

events, and q is then the remainder of the Euclidian

division of N by n.

Table 1 Detection Rate of the Asynchronous Canny Detection According

to the Gaussian Filter Variance

Ieng et al. : Asynchronous Event-Driven Image Filtering

1496 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

The number of calculation units consumed by K frames
of L� C pixels filtered with the frame-based filtering

technique is

K:LC ¼ N � q

n
LC: (31)

We can bound the cost function by two functions that do

not depend on q

8n 2 N;
N

n
� 1

� �
LC G

N � q

n
LC G

N

n
LC: (32)

We define glðnÞ ¼ ððN=nÞ � 1ÞLC and ghðnÞ ¼ ðN=nÞLC,

the lower and the upper bounds of the number of

computation unit necessary to process all frames generated

for each set of n events. Let us find the inequalities on n
such that glðnÞ � N and then n such that ghðnÞ � N. This

will allow us to give a bounding interval to localize n such

that ððN � qÞ=nÞLC � N, i.e., n leading to a less costly
frame-based filtering than the event-based one. We have

glðnÞ � N , n � LC
N

LC þ N
(33)

and

ghðnÞ � N , n � LC: (34)

We observe that lim
N!1

LCðN=ðN þ LCÞÞ ¼ LC. This implies

the rate n to be greater or equal to LC to achieve a less

consuming processing for the frame-based filter. The upper

bound function gh has the same asymptotic behavior; it can
be concluded that as long as the event number per frame n
does not exceed the number of pixels of the camera, then

the event-based technique is less computationally expen-

sive. The hypothesis of N ! þ1 is also easily satisfied if

compared to LC because, in practice, N � LC.

Fig. 12 shows the computation cost of the frame-based

filtering when frames are generated according to n. A

family of functions are drawn according to the total number
of events N. The black curve at the bottom shows the lower

bound function gl when it meets the value N: it provides an

estimation of the rate where the frame-based filtering

consumes as many resources as the event-based filtering.

B. Frames Generated at Constant Frame Rates
If frames are generated at a constant frame rate F, for a

total duration of T, then the number of computation units

is equal to T � F� LC. The event-based processing still

consumes N computation units. Both techniques consume
the same resources if

N ¼ T � F� LC) F ¼ N

T � LC
: (35)

Statistics established over 50 different sequences (both

indoor and outdoor) show that the ratio N=T is closely

around 2� 105 for the ATIS. This leads to a frame rate

F ’ 3, below which the event-based filtering consumes

more resources than the frame-based filtering. This
statistical result shows that event-based filtering is usually,

if not always, more computationally efficient than frame-

based filtering, since 15 fps is already considered to be low

frequency in image processing.

VII. DISCUSSION AND CONCLUSION

In this paper, we introduced a generic methodology to

filter event-based spatio–temporal visual signals. The

approach is generic and can be extended to any nonlinear

filter, and to more complex operations such as the Canny
edge detector. In this work, we also provided an insight

into level-crossing sampling, by defining its properties and

the setting boundaries of its parameters. We provided the

link between bandwidth and level-crossing threshold. The

paper presented an explicit comparison methodology to

estimate the computational cost of event-based versus

frame-based algorithms.

Results show that, as long as the number of events used
to create a frame is smaller than the total number of pixels

of the sensor, the event-based processing is more efficient

than the frame-based one, assuming that the same

operation is performed on both data types and a single

pixel is processed in the same manner in both frame-based

and event-based algorithms.

In Section V, asynchronous event-based filters were

evaluated and compared with standard frame-based filters.

Fig. 12. Cost functions of frame-based filtering compared to

event-based filtering. The intersections of the black curve with the cost

functions shows the rate at which both filtering techniques consume

the same computation resources. Frame-based filtering is more

computationally expensive than event-based filtering as long as

the event rate is smaller than the number of pixels of the sensor,

i.e., n G LC.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1497

If performance is quantified from a spatial perspective, the
frame-based algorithms perform slightly better than the

event-based algorithms.

The work in this paper outlined two main advantages

in using the asynchronous filter: the low computational

cost and the high temporal resolution dynamic. The

asynchronous filter preserves the temporal resolution and

the dynamics of the signal and it lowers the computational

costs, the tradeoff being that in some cases, the results
may be less accurate than in the frame-based filtering.

This is due to the fact that event-based filtering processes

locally around each incoming event without taking into

account the general statistics from the whole image that,

in some cases, might be needed. Another reason for the

lower performance of the asynchronous filter (e.g., in the

case of the complex nonlinear Canny’s edge detector) is

likely because the implementation of the frame-based
algorithms is usually very optimized for a 2-D signal. On

the contrary, the asynchronous Canny detector presented

in this paper is a straight translation of the detector

algorithm without specific optimization. This leaves

plenty of room for improvement of dedicated hardware

and software.

From a hardware point of view, several dedicated and
massively parallel computing platforms will be soon

available. Breakthroughs in event-based data processing

are expected. Because each pixel of an event-based sensor

operates independently, it is possible to speculate that

processing each pixel’s output by an independent thread

each time it notifies the availability of new data will

produce even more outstanding computational efficiency.

To cite some examples of massively parallel computing
platforms, we have the SpiNNaker [28] multicore system

or the NEUROGRID [29] silicon neuron network im-

plemented on-chip. They also promise to deliver results

with much lower energy consumption than conventional

computation platforms.

If the spatial accuracy is the primary criterion of

performance, frame-based techniques implemented on

dedicated hardware seem to be a better choice than
asynchronous techniques. But if a real-time processing is

an issue, it is unlikely for a frame-based algorithm to be

able to match a frame rate of 106 fps (the ATIS temporal

accuracy is 1 �s). For such a case, frames have to be

dropped. Consequently, highly fast motion scenes can be

processed accurately only by asynchronous algorithms. h

REF ERENCE S

[1] C. Posch, D. Matolin, and R. Wohlgenannt,
‘‘A QVGA 143 dB dynamic range frame-free
pwm image sensor with lossless pixel-level
video compression and time-domain CDS,’’
IEEE J. Solid-State Circuits, vol. 46, no. 1,
pp. 259–275, Jan. 2011.

[2] T. Hawkes and P. Simonpieri, ‘‘Signal coding
using asynchronous delta modulation,’’
IEEE Trans. Commun., vol. COM-22, no. 5,
pp. 729–731, May 1974.

[3] C. Vezyrtzis and Y. Tsividis, ‘‘Processing of
signals using level-crossing sampling,’’ in Proc.
IEEE Int. Symp. Circuits Syst., May 2009, no. 1,
pp. 2293–2296.

[4] Mahowald, An Analog VLSI System for
Stereoscopic Vision. Norwell, MA, USA:
Kluwer, 1994.

[5] J. Lazzaro and J. Wawrzynek, ‘‘A multi-sender
asynchronous extension to the AER
protocol,’’ in Proc. Conf. Adv. Res. VLSI,
1995, pp. 158–169.

[6] A. Andreou and K. Boahen, ‘‘A 48 000 pixels,
590 000 transistors silicon retina in
current-mode subthresohold CMOS,’’ in Proc.
Symp. Circuits Syst., 1994, vol. 1, pp. 97–102.

[7] E. Culurciello, R. Etienne-Cummings, and
K. Boahen, ‘‘A biomorphic digital image
sensor,’’ IEEE J. Solid-State Circuits, vol. 38,
no. 2, pp. 281–294, Feb. 2003.

[8] E. Culurciello and R. Etienne-Cummings,
‘‘Second generation of high dynamic range,
arbitrated digital imager,’’ in Proc. Int. Symp.
Circuits Syst., 2004, vol. 4, pp. IV-828–IV-831.

[9] P. Lichtsteiner, T. Delbruck, and
J. Kramer, ‘‘Improved ON/OFF temporally
differentiating address-event imager,’’ in Proc.
11th IEEE Int. Conf. Electron. Circuits Syst.,
2004, pp. 211–214.

[10] P. Lichtsteiner, C. Posch, and T. Delbruck,
‘‘A 128 � 128 120 dB 15 �s latency
asynchronous temporal contrast vision
sensor,’’ IEEE J. Solid-State Circuits, vol. 43,
no. 2, pp. 566–576, Feb. 2008.

[11] K. A. Zaghloul and K. Boahen, ‘‘Optic nerve
signals in a neuromorphic chip II: Testing and
results,’’ Trans. Biomed. Eng., vol. 51, no. 4,
pp. 667–675, 2004.

[12] P.-F. Ruedi et al., ‘‘A 128 � 128 pixel 120 dB
dynamic range vision sensor chip for image
contrast and orientation extraction,’’ in Dig.
Tech. Papers IEEE Int. Solid-State Circuits Conf.,
2003, pp. 226–490.

[13] P. Lichtsteiner, C. Posch, and T. Delbruck,
‘‘A 128� 128 120 dB 30 mw asynchronous
vision sensor that responds to relative
intensity change,’’ in Dig. Tech. Papers
IEEE Int. Solid-State Circuits Conf., 2006,
pp. 2060–2069.

[14] U. Mallik, M. Clapp, E. Choi,
G. Cauwenberghs, and R. Etienne-Cummings,
‘‘Temporal change threshold detection
imager,’’ in Dig. Tech. Papers IEEE Int.
Solid-State Circuits Con., 2005, pp. 362–603.

[15] T. Delbruck and P. Lichtsteiner, ‘‘Fast sensory
motor control based on event-based
hybrid neuromorphic-procedural system,’’ in
Proc. IEEE Int. Symp. Circuits Syst., 2007,
pp. 845–849.

[16] Y. Tsividis, ‘‘Event-driven data acquisition and
digital signal processing-a tutorial,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 57,
no. 8, pp. 577–581, Aug. 2010.

[17] J. Mark and T. Todd, ‘‘A nonuniform sampling
approach to data compression,’’ IEEE Trans.
Commun., vol. COM-29, pp. 24–32, 1981.

[18] B. Bidégaray-Fesquet and L. Fesquet, ‘‘A fully
nonuniform approach to FIR filtering
Proc. Int. Conf. Sampling Theory Appl.,
2009, pp. 1–4.

[19] L. Fesquet and B. Bidégaray-Fesquet, ‘‘IIR
digital filtering of non-uniformly sampled
signals via state representation,’’ Signal
Process., vol. 90, no. 10, pp. 2811–2821,
Oct. 2010.

[20] F. Aeschlimann, ‘‘Traitement du Signal
chantillonn non uniformment: Algorithme et
Architecture,’’ Ph.D. dissertation, Dept. Tech.

Inf. Microelectron. Integrat. Syst.
Architect., Inst. Nat. Polytechnique
de Grenoble, Grenoble, France,
2006.

[21] T. Serrano-Gotarredona, A. G. Andreou, and
B. Linares-Barranco, ‘‘AER image filtering
architecture for vision-processing systems,’’
IEEE Trans. Circuits Syst. I, Fundam. Theory
Appl., vol. 46, no. 9, pp. 1064–1071,
Sep. 1999.

[22] A. Lazar and L. Toth, ‘‘Perfect recovery and
sensitivity analysis of time encoded
bandlimited signals,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 51, no. 10,
pp. 2060–2073, Oct. 2004.

[23] L. Camunas-Mesa et al., ‘‘An event-driven
multi-kernel convolution processor module
for event-driven vision sensors,’’ IEEE J.
Solid-State Circuits, vol. 47, no. 2,
pp. 504–517, Feb. 2012.

[24] C. Tomasi and R. R. Manduchi, ‘‘Bilateral
filtering for gray and color images,’’ in Proc.
Int. Conf. Comput. Vis., 1998, pp. 839–846.

[25] G. Cao, Y. Zhao, and R. Ni, ‘‘Edge-based blur
metric for tamper detection,’’ J. Inf. Hiding
Multimedia Signal Process., vol. 1, pp. 20–27,
2010.

[26] Y. Abdel-Aziz and H. Karara, ‘‘Direct linear
transformation from comparator coordinates
into object space coordinates in close-range
photogrammetry,’’ in Proc. Symp. Close-Range
Photogramm., 1971, pp. 1–18.

[27] J. Canny, ‘‘A computational approach to edge
detection,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-8, no. 6, pp. 679–698,
Jun. 1986.

[28] S. Furber, F. Galluppi, S. Temple, and
L. A. Plana, ‘‘The SpiNNaker project,’’ Proc.
IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[29] B. V. Benjamin et al., ‘‘Neurogrid: A
mixed-analog-digital multichip system for
large-scale neural simulations,’’ Proc. IEEE,
vol. 102, no. 5, pp. 699–716, May 2014.

Ieng et al. : Asynchronous Event-Driven Image Filtering

1498 Proceedings of the IEEE | Vol. 102, No. 10, October 2014

ABOUT T HE AUTHO RS

Sio-Hoı̈ Ieng received the Ph.D. degree in

computer vision from the University Pierre

and Marie Curie, Paris, France, in 2005.

He is now an Associate Professor at the

University Pierre and Marie Curie and a member

of the Vision Institute, Paris, France. He worked

on the geometric modeling of noncentral cata-

dioptric vision sensors and their link to the

caustic surface. His current research interests

include computer vision, with special reference

to the understanding of general vision sensors, cameras networks,

neuro- morphic event-driven vision and event-based signal processing.

Christoph Posch (Senior Member, IEEE) re-

ceived the M.Sc. and Ph.D. degrees in electrical

engineering and experimental physics from

Vienna University of Technology, Vienna,

Austria, in 1995 and 1999, respectively.

From 1996 to 1999, he worked on analog

CMOS and BiCMOS IC design for particle detec-

tor readout and control at CERN, the European

Laboratory for Particle Physics, Geneva,

Switzerland. From 1999 onwards he was with

Boston University, Boston, MA, USA, engaging in applied research and

mixed-signal integrated circuit design for high-energy physics instru-

mentation. In 2004, he joined the newly founded Neuroinformatics and

Smart Sensors Group at the AIT Austrian Institute of Technology

(formerly Austrian Research Centers ARC), Vienna, Austria, where he

was promoted to Principal Scientist in 2007. Since 2012, he has been co-

directing the Neuromorphic Vision and Natural Computation group at the

Institut de la Vision in Paris, France, and has been appointed Research

Professor at Université Pierre et Marie Curie, Paris VI, France. His

research interests include neuromorphic analog VLSI, CMOS image and

vision sensors, biology-inspired signal processing, and biomedical

devices and systems. He is co-founder and scientific advisor of two

high-tech start-up companies, has authored more than 90 scientific

publications and holds several patents in the area of artificial vision and

image sensing.

Dr. Posch has been recipient and co-recipient of eight IEEE awards,

including the Jan van Vessem Award at the IEEE International Solid-State

Circuits Conference (ISSCC) in 2006, the Best Paper Award at ICECS 2007,

and Best Live Demonstration Awards at ISCAS 2010 and BioCAS 2011. He

is a member of the Biomedical and Life Science Circuits and Systems,

Sensory Systems, and Neural Systems and Applications Technical

Committees of the IEEE Circuits and Systems Society.

Ryad Benosman is a full Professor at the

Universit Pierre et Marie Curie, Paris, France.

He leads the Neuromorphic Vision and Natural

Computation group. He focuses mainly on

neuromorphic engineering, visual computation,

and sensing. He is a pioneer of omnidirectional

vision systems, complex perception systems,

variant scale sensors, and noncentral sensors.

His current research interests include the

understanding of the computation operated by

the visual system with the goal to establish the link between computa-

tional and biological vision. He is also invested in applying neuromorphic

computation to retina prosthetics and is a cofounder of the startup

Pixium Vision.

Ieng et al. : Asynchronous Event-Driven Image Filtering

Vol. 102, No. 10, October 2014 | Proceedings of the IEEE 1499

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

