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The growing demands placed upon the eld of computer vision lave renewed the
focus on alternative visual scene representations and prassing paradigms. Silicon
retinea provide an alternative means of imaging the visuaheironment, and produce
frame-free spatio-temporal data. This paper presents an westigation into event-based
digit classi cation using N-MNIST, a neuromorphic datasetreated with a silicon retina,
and the Synaptic Kernel Inverse Method (SKIM), a learning rtied based on principles
of dendritic computation. As this work represents the rst &rge-scale and multi-class
classi cation task performed using the SKIM network, it expores different training
patterns and output determination methods necessary to exnd the original SKIM
method to support multi-class problems. Making use of SKIM etworks applied to
real-world datasets, implementing the largest hidden layesizes and simultaneously
training the largest number of output neurons, the classi ation system achieved a
best-case accuracy of 92.87% for a network containing 10,00 hidden layer neurons.
These results represent the highest accuracies achieved ainst the dataset to date and
serve to validate the application of the SKIM method to everbased visual classi cation
tasks. Additionally, the study found that using a square psk as the supervisory training
signal produced the highest accuracy for most output deternmation methods, but
the results also demonstrate that an exponential pattern ibetter suited to hardware
implementations as it makes use of the simplest output detenination method based on
the maximum value.

Keywords: N-MNIST, object classi cation, OPIUM, SKIM, mult i-class

1. INTRODUCTION

The need for visual sensing in commercial technologies kpsre&enced a rapid increase, often
driven by the growing eld of autonomous devices. In many caslee growth and applicability of
such systems are restricted by the speed, latency, and pomsrroption of the current algorithms
and hardware used in computer vision. Autonomous systemsasgrt one of the most challenging
tasks for a computer vision system with performance limitedtrict power budgets and requiring
fast and accurate processing with a high cost of failure.
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Visual sensing is also an important task in the biological Finally, the third area of advances concern the design
realm, and is heavily relied upon by many di erent organisms.of Spiking Neural Network (SNN) algorithms, which make
Sighted animals use vision to e ectively sense and reactéo thuse of the diering paradigm of hardware and sensors to
surrounding environment, often with extreme restrictiopisced  extract information and provide computation. Examples of these
on latency, speed, and energy consumption. These biologicgystems include the SKIM presented Tapson et al. (2013)
systems overcome many of the problems faced by conventiondle HFIRST algorithm found irDrchard et al. (2015h)as well
computer vision, and do so in a manner that is many orders ofs multi-layer deep learning approaches as exploredPirez-
magnitude more e cient in terms of power consumption. Carrasco et al., 2013; O'Connor et al., 2013

Although it is extremely di cult to model and reproduce This paper presents an implementation of SKIM networks to
the methods used by biology in order to sense and proceske event-based output of gllicon retinagn order to perform
visual information, there is merit in examining the overhitg  a large-scale classi cation task. Such steps are critiqgaioning
mechanisms and paradigms used in biology to design systerttge viability and e cacy of Spiking Neural Network algorithsn
that are biology-inspired. This paper unites two such systems,Although the algorithm presented is a software simulation,
biology-inspired silicon retina and a learning method based the design of the system in an event-based manner naturally
the notion of dendritic computation. The methods presented inlends itself to implementation on the emerging spike-based
this work explores a new approach to visual sensing, speci callyomputational hardware.
for the purposes of classi cation. It is important to stressttha
the systems presented in this paper are not biologically reglist 1.2. Synaptic Kernel Inverse Method
but rather are inspired by biological approaches to sensing anthe SKIM, proposed and outlined ifapson et al. (2013)
computation. is a neural synthesis technique which produces networks of

This paper begins by introducing a number of recent advanceseurons and synapses that are capable of implementing arpitrar
in arti cial visual sensing and computation, with a focus on functions on spike-based inputs. The network generally coistai
systems that make use of silicon retinas. This is followed by @asingle input neuron for each input channel, and a single neuron
short description of the Synaptic Kernel Inverse Method (SKIM)for each desired output channel. The conventional fan-out to
which forms the learning mechanism used in this work. Thisa higher dimensional space, present in most Linear Solutions
is followed by a discussion of the classi cation methodglog to Higher Dimensional Interlayer (LSHDI) network systems (a
and the means by which SKIM is extended to process visuaitroduced and described iffapson et al., 20)3and usually
information. The results of the experiments are then presgnteimplemented through a hidden layer of neurons, is replaced with

along with a discussion and conclusion. multiple synaptic connections, which are shared between output
neurons.
1.1. Recent Advances SKIM di ers from other LSHDI systems, such as the Extreme

The recent advances made in arti cial visual sensing haveearning Machine (ELM), in that it is speci cally designed to
occurred primarily in three areas. The rst deals with thelearn spike-timing dependent signals. It therefore bears setlo
process of capturing visual information from scenes in arresemblance to synthesis methods such as the Neural Enigigee
e cient manner using neuromorphic devices callesilicon Framework (NEF), which is also capable of spike-based input-
retinaewhich preserve accurate timing of log-intensity changesutput relationships Eliasmith and Anderson, 2004 SKIM
in the scene. This accurate timing has been shown to carmi ers from the NEF in that it does not rely on rate-encoded
additional information (@kolkar et al., 2015 Inspired by signals, and rather relies on both the spatial and temporal
their biological counterparts, these devices use analogitdrc information in the incoming spike-trains.
at each photosensitive element to perform computation and SKIM is based on a biologically plausible network structure
compression, and transmit this information in a spike-basednodeled on the synaptic connections between neurons. An
manner. A full treatment and in-depth review of theséicon overview of the SKIM network is shown Figure 1 In the SKIM,
retinaecan be found irPosch et al. (2014nd the device used in input neurons are considered analogous to pre-synaptic neurons
this paper makes use of the Asynchronous Time-Based Imagirand input event streams are projected to a layer of synapses
Sensor (ATIS) described Fosch et al. (2011) through a set of random weights. Each weight is representative
There have also been a number of signi cant advances in thef a speci ¢ dendritic branch leading toward a synapse. These
design and development of large-scale biology-inspired spikinsynapses implement non-linear responses to the received durren
neural hardware, which forms the second area of advancemetitom the pre-synaptic dendritic branches through the use of-hon
These hardware devices compute in a power e cient mannetinear kernels, such as exponentials or decaying-alpha ifumst
inspired by neurons in the brain and can be used to process thi¢is these kernel functions that provide the SKIM with the lei
captured visual signals from neuromorphic devices sudili@sn  to respond to temporal information in the input as they convert
retinae Prominent examples of these systems include SpiNNakeliscrete incoming spikes into a continuous value.
(Painkras et al., 20)Neurogrid Benjamin et al., 20)4and the The outputs of these synapses proceed down the post-synaptic
TrueNorth processor from IBMI{lerolla et al., 201y which is  dendritic branches, which connect to the soma of the output
capable of implementing one million neurons and 256 millionneurons. The dendritic branches sum the currents from the
synapses in real time and is reported to consumption of less thasynapses at the soma of the output neuron, causing itto reef th
100 mW. soma potential exceeds a speci ed threshold. It is the propertie
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FIGURE 1 | Topology of the Synaptic Kernel Inverse Method (SK  IM) as shown in Tapson et al. (2013) . Each input layer neuron (left) will be an input from a
separate pixel. At initialization, the static random weigh and synaptic kernels are randomly assigned and they remai xed throughout the learning process. During
learning, the output weights in the linear part of the systerare solved to minimize the error between the system output ahthe desired output.

of these post-synaptic dendritic branches which are analjgica events in the Address-Event Representation (AER), as dedcribe

calculated in the SKIM method as they are analogous to thatine in Boahen (2000)

output weights in other similar systems. The N-MNIST dataset contains 60,000 training digits and
The linear output weights are iteratively calculated usimg t 10,000 testing digits with an approximately equal number of

Online Pseudo-inverse Update Method (OPIUMin Schaik and samples of handwritten digits in the range of 0-9. Each image

Tapson, 201f which allows for the iterative calculation of an consists of a single, centered digit on a white backgroundlyeas

analytical solution for the weights. encoded to an event stream with a spatial resolution of 334
pixels. Although the original MNIST digits are 2828 pixels in
1.3. Dataset size, in order to account for the saccade motion, a 324 pixel

This work makes use of the N-MNIST spiking neuromorphic resolution was required.

dataset presented byrchard et al. (2015awhich was created

speci cally to provide a benchmark for neuromorphic vision 1.4. Contributions

algorithms. Additionally, it serves to provide a spike-basedhe work presented in this paper makes a number of

analog to the corresponding MNIST dataset, rst presented bygontributions to event-based vision processing and the SKIM

LeCun et al(1999, and which provides an important and well- algorithm. It demonstrates the e cacy and applicability of a

understood benchmark for the computer vision community.  spike-based approach to classi cation using real-world event-
The conversion process involved the use of an ATIS camelzased data. Through the applications of the methods described

attached to a pan/tilt mount and positioned in front of an LCD in this paper, this paper presents the highest accuracy achieved

screen. The converted recordings for each image in the distas on the N-MNIST dataset to date.

consists of the event-based output from the camera as theifian/t  This work also extends the original SKIM algorithm to multi-

mechanism through across three saccade-like motions itestr class problems, exploring the di erent methods of determining

in Orchard et al. (2015a)rhe output of each consists of a set ofthe winning output class in such systems. Four dierent
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output determination methods are described and discusseds due to the slow movement of the camera relative to the rate
Additionally, the work also explores various training pattefor  at which events are time-stepped. In addition, the cameraelias
use in SKIM networks, and fully explores and characterizes thwere not con gured for high-speed acquisition but rather to
resulting accuracy. Finally, these two aspects are combirggde  reduce noise and maximize the balance between ON and OFF
insight into the methods of applying algorithms such as SKIM tcevents. This is an important step as it allows the SKIM alganit
event-based visual classi cation systems. to simulate millisecond time-steps, instead of microseconelsp
which dramatically increases the speed of computation.
Each training and testing sequence in the dataset consists of
2. MATERIALS AND METHODS a stream of AER events and a label indicating the digit class
to which it belongs. The AER events generated from the ATIS
Applying the SKIM algorithm to a classication task with camera have the following form:
the scale of the N-MNIST dataset requires a number of
modi cations to the underlying SKIM algorithm and a complete DIx vt ol 1
eD [xy;t;pl )
software framework. The framework needs to manage the,state
implement the neural layers, collate the outputs and manage t
training and testing regime.

Prior works have explored the theoretical performance o
SKIM networks using pre-determined patterns with varying
iﬁ\éell\ju(;f gmfae oili ;gslgtﬁ; ;Zeo?il:;tirr]lgjss?(?l‘\)/:IZZ;;;;?Q{?I? tfs,ensor ang 2 [ 1; 1] denotes the polarity, indicating whether
(2013 and then later applied the SKIM to a real-world separationIt was an ON event or an OFF event. The SKIM network cannot

problemTapson et al(2015. Others have used the algorithm to operr_;lte on th_e event stream direc'_tly, an_d a conversiop tOI.ﬁ ful
determine angle and direction in biological motion estiroat, speci ed spatio-temporal pattern in which rows ascribe input
and in gait detection ee et al(2019 channels and columns denote time-steps is necessary. We can

The application of SKIM to the N-MNIST dataset requires€N°t€ such a spatio-temporal pattern asuch thatl(c t)
networks with an order of magnitude more input neurons anddenOteS the dendritic current on channelat the time step
synapses than previous SKIM networks. In addition, the majori denoted by_t. . . . . T
of the applications to date have formulated their outputs asibin The spatial information contained in D (x;y) " is inherently

classi cation tasks, whereas the N-MNIST is inherently a s l,OSt V\{hen‘ applied to the.SKIM network as the synaptic non-
problem. linearity discards the spatial location of channels. Thenefany

- . i i 2 i i
The training methods used for the prior SKIM transformation that consistently mag3< ! R is a suitable

implementations have, to date, created a single pattern dimgis candidate for the conversion of spatial locations to inputruiels

of all the training data, accompanied by a supervisory Ieajninfor SKIM. This only hold true if there is no interaction betwee

pattern of equal duration. The input pattern is aspatio-temporal!npult_dChtan?ﬁls' Opg_r?tmn; suchd_as spat|f|1q| dc_)wnl-samptllrl_g can
pattern representing spikes arriving at the input nodes of th hvalidate this condition depending on the impiementation.

SKIM network, and the supervisory pattern contains the debire " hgn doglvn-sirgplln? sp?tlallhy, thhe .oroller og ctl‘rl]annelsbbecomets
output spikes from the output neurons. signi cant as it dictates to which pixel (and then subsequen

When dealing with the N-MNIST dataset, the directchannel) the information from a region of pixels aggregatdks.

application of the above method is not feasible due to the siz%::e e_xpenments performed on the N'MN|ST d?taset made use of
the simple mapping operation shown in Equation (2).

and number of the patterns. Instead, the SKIM implementation
used in this work trains each pattern in a stand-alone fashion
preserving the random weights, the con guration of the hidde cDb
layer nodes, the inverse correlation matrix and the lineatpat
weights between training sequences. This allows the né&ttor
train on any number of training samples as it is no longer boundn the above equation, the constant valueepresents the spatial
by the available memory. down-sampling factor applied to the pattern abdc operation
When training the SKIM networks with the N-MNIST dataset, represents the oor function applied ta. The down-sampling
the digit sequences were extracted from the dataset in aorand factor operates on both the and they coordinates, e ectively
order. The training order therefore contained a randomlyreducing the number of channels by a factor of. As no
interleaved set of all output classes, and each sequencenlyas alown-sampling was used in this work,D 1 for all experiments.
used once for training. The random training order was preselrv The value of 34 derives from the pixel dimensions of the
when running multiple trials of the same network con guratio N-MNIST digits, as opposed to the 28 28 pixel images
A random testing order was also used in this work, although it from the original MNIST dataset. Down-sampling the temporal
not required as no updates to the network are performed. information is far simpler ad is a monotonically increasing
The temporal resolution of each event in the N-MNIST single-valued variable, requiring only a division and oogin
datasetis reduced from the order of microseconds to milisels  operation to quantize it into the appropriate time step as shown
with minimal impact on number or nature of the events. This in Equation (3). This equation is used to reduce the resotutio

r\n the above equatiory D (x;y) denotes the spatial location of
fhe pixel generating the eveitgontains the value of the internal
time-stamping counter on the ATIS camera at the moment at
which the camera circuitry receives the event from the physica

34 vy

ccbic )
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from microseconds to milliseconds. 2.1. Training Patterns
¢ In theory, a SKIM network should require only an output spike
tDb—c (3) as asupervisory training pattern. In reality, a single spile,(a

pulse with a duration of a single time step) does not produce an
Given the temporal reduction from microseconds toerror signal with enough magnitude or duration to allow rapid
milliseconds, D 1000 for the purposes of the networks learning. Itis possible to train with a short duration pulse} tu
presented in this work. Therefore, for each incoming event requires multiple presentations of each digit and does naabty
the e ect on the spatio-temporal input pattern for SKIM is as converge. In place of a single spike, using a training pattern of
follows: a longer duration produces a better result without the need fo

multiple presentations of the training sequence. Having aguatt

Ic ! I 1)Cp (4)  that spans multiple time-steps also allows the use of di erent

éraining patterns, which can have a signi cantimpact on bdtle t
rlir@ining itself and the most appropriate method of determining
the output class.

Figure 2 shows three di erent training patterns that produce
good results with the SKIM network. The at output pattern is
the logical extension of the single output spike, but has twaysh
giscontinuities on each end. The Gaussian pattern represkats
opposite approach, and exhibits a smooth (although discre}ized
curve which peaks during the middle of the output pattern.
Jthe exponential pattern represents the combination of the two
approaches, and maintains the initial discontinuity but guady
decreases so as to exhibit a smooth return to zero.

To evaluate the performance of these training patterns,

The above operation demonstrates that the e ects of multipl
events accumulate when mapped to the same channel al
time-step, and that their polarity dictates the nature of thei
contribution. It is also important to remember that the
value oft is always monotonically increasing, allowing the
iterative construction of the spatio-temporal pattern, anthais
processing to begin for a time step once the time value for th
next event exceeds it.

The output of a SKIM network is a continuous value for
each output class representing the soma potential at the outp
neuron. In the original SKIM implementation byapson et al.
(2013) the application of a xed threshold converted the

continuous value into a binary spike, allowing the creatidn o .
an output spatio-temporal pattern. The nature of this OutloutfuII tests against the N-MNIST datasets were performed. Each

spatio-temporal pattern retains the same temporal resolutionnew"Ork contained 1000 hidden layer neurons, and made use

namely the same number of equally sized time-steps, with th%f the full training set. Sixty trials of each experiment were

rows changed to represent the output of each output neuron. performed, with only the random weights varying betweenisiia

As the training update in a SKIM network requires a measureand the average error rate and standard deviation reported.

of error between the network output and the desired output, it
follows that the format for the learning sequence must adtter  2.2. Output Determination Methods
the same format as the network output. We can therefore de n&ll prior work with the SKIM algorithm was always limited
the output patterrO such thatO(n; t) represents the real-valued to training a single output neuron and employed a threshold
potential at output neurom at time t. Therefore, for everyt, to generate output spikes from the soma potential of output
the input patternl contains the instantaneous input values forneurons. If trained with the same random weights and
all cchannels, and the training pattef@ contains all the desired hidden layer con guration, it is possible to independently
output values for each output neuran train and then combine multiple output neurons (and
The analysis of the N-MNIST dataset presenteddirchard  their associated thresholds) to implement a multi-class
et al. (2015agshows that a pattern length of 315 ms is su cient classier. As the outputs are already spikes, it is possible
to encode every pattern in both the training and testing setto use existing spike-based techniques such as rst-to-spike
Appending an additional 45 ms onto the pattern allows the lasand a winner-take-all approaches to selecting an output
events to have an e ect on the learning system, resultingotat class. Unfortunately, due to the need for ne-tuning and
pattern length of 360 ms. It is within this additional 45 ms tha determining thresholds this approach does not scale well

both the training and recall occur. when dealing with datasets such as N-MNIST, and there exists
1.0 1.0 1.0
0.5 0.5 0.5
0 L 0 0 1
0ms 5ms 10 ms 0ms 5 ms 10 ms 0ms 5ms 10 ms
Gaussian Pattern Exponential Pattern Flat Output Pattern
FIGURE 2 | Diagram showing different training patterns used t o train the SKIM network.
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a need for a more robust and automated means of outpusignal is expected to be present, avoiding the need for explicit
determination. thresholding.

In practize, multi-class problems constructed from Figure 3 demonstrates the four methods used. The rst
independently trained output neurons suer from the need approach is the Max Method, and simply takes the output class
for individual and speci ¢ thresholds for each output class, o that achieves the maximum value during the output period.
the use of a global threshold which is often sub-optimal, & thThis maximum in the SKIM output does not necessary have to
ranges and characteristics of the output neurons may di ercorrespond with the intended location of the maximum in the
This introduces additional parameters into the classi cati training signal, but simply represents the maximum of any odtpu
methodology, which is di cult to empirically determine give class during the output phase. The second approach calculates
the size of the datasets and the time required to train on them the area under each curve, and selects the output class with the

In response to this issue, the approaches detailed in thisighestoverall area. This is analogous to integratingritberming
section all serve to remove the need for xed thresholdsyalues, and picking the highest value. It is important to ndtatt
and replace them with a comparison between output neuronghe output can be either positive or negative, and any areasari
directly. For this approach to work, the outputs must thereforefrom portions of the curves below zero are negative in valug an
be relative in magnitude, which requires the simultaneousequire subtracting from the total positive area.
training of all the output classes. Although the OPIUM method The third and fourth methods exploit knowledge about the
underpinning SKIM does include a normalization step, the rangeraining pattern, and attempt to weight the outputs accordingl
of the linear weights can vary from class to class when tgini before applying the same techniques used in the rst two
individually, and prevents the direct comparison of outputssa methods. This has no e ect when using a square training
values. When training all outputs simultaneously with SKIMpulse, but has a signi cant e ect when using a Gaussian or
(underpinned with OPIUM), the normalization applies to all exponential training sequence (as the at pattern results in
output weights, keeping them relative in magnitude to onea uniform pattern as shown irFigure 2). The third method
another. weights the outputs proportionally to the training pattern,

This paper proposes and investigates four approaches #nd then nds the maximum value. This method, dubbed
determining the output in a multi-class problem using SKIM, the Weighted Max method, places emphasis on the portions
primarily applied to the N-MNIST dataset and also applicableof the output range where a high value is expected. The
to the multi-class classi cation problems in the N-Calte®il fourth method, referred to as the Weighted Area method,
datasetintroduced i@rchard et al. (2015aEach method utilizes weights the output values using the input pattern and then
the real-valued output from each of the output neurons duringcalculates the areas under the curve and selects the highest
the section of the pattern in which the supervisory learningoutput.

FIGURE 3 | Diagram showing the four output determination method s evaluated for use in multi-class SKIM problems. (A) An example SKIM network with
two simultaneously trained output neurons coding for two @sses; (A,B).(B) Example outputs from the two output neurons during the perid in which the training
pattern occurs. In this example, the training utilized is th&aussian training pattern shown ir(C). Diagrams showing the manner of calculating the four output
selection methods are presented in(D), and include a label showing the theoretical winning classiieach case. Note that for the Weighted Sum and Weighted Area
methods, the training pattern is also shown.
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3. RESULTS

The results for this paper are divided among four sections. The
rst section presents the classi cation results achievedewh
applying the SKIM learning method to the N-MNIST dataset.
These results serve as benchmark results for SKIM networks
of varying sized hidden layer networks and achieve the lighe
reported accuracy to date.

The second section presents the results of a statistica
investigation into the normality of the distribution of raks
for a SKIM network. The outcome of this section is important
as it provides a robust underpinning for the results presented
in the next two sections, which explore the e ects of the
training patterns and output determination methods presented
in Sections 2.1 and 2.2.

3.1. C|aSS| patlon ReSUItS . | FIGURE 4 | Training accuracy over the rst 10,000 presenteds  amples
As N-MNIST is a new dataset, the results presented in thiSfor N-MNIST using SKIM for increasing numbers of hidden layer

paper serve to supplement the initial classi cation benchmarks neurons. Each con guration of hidden layer neurons was trained sequetially

presented inOrchard et al. (2015a)The statistical classi ers through a randomly shuf ed training sequence, and tested aganst the testing
. . dataset at increments of 1000 hidden layer neurons. Each tésvas performed

presentEd in that work attempted to set a theorethal lower independently of the training, and no learning took place ding the testing

bound on performance, and these measures .are |mp0rta thhase. Also shown on the graph are the accuracies due to chane, which is

to understanding the nature of the classication problem| 10% for the 10-class classi cation task. The nal results show on the right

but additional value is also gained from applying existing represent the full training accuracy tested against the fLiL0,000 training

and state-of-the-art spike-based classi cation techniqtﬂathe samples whilst intermediate points on the curve were calcated over a

classi cation problem randomly drawn subset of 2000 testing samples.

The comparison results presented in this paper represent a

detailed application of the SKIM classi cation network to $hi TABLE 1 | Accuracy for the N-MNIST dataset after 10,000 and 60,0 00

dataset, and present the highest classi cation accuracigeett  training samples for different hidden layer sizes.

on the N-MNIST dataset to date.

Figure 4 presents a plot of classi cation accuracy (in terms " ¢ 9%¢ 10,000 samples (%) 60,000 samples (%)
of percentage of digits correctly identi ed) as a functiontoé ;5 26.36 26.42
number of training samples presented. Each curve representg, 65.92 65.79
the results of a network with a di erent hidden layer size &bt 54, 69.62 7011
against the test dataset at regular intervals during thiing 5, 73.70 24.07
process. The nal accuracies obtained for these networks agg, 76.73 76.36

presented iffable 1
The testing phase occurred separately from the learnin
process, and the results were never included in the training

1000 81.03 81.51
oo 82.10 82.31

in any update mechanism. The plot displays only the rst 10,000 e 5590

samples as the network performance stabilizes and remains

constant after that point. Both training and testing ordersre/ Table 2 provides the results of fully trained SKIM networks
always random. with increasingly large number of hidden layer neurons.

It is interesting to note that a network trained with only 10 Whereas, the 2000 neuron network achieved an accuracy of
output neurons achieves a performance 026.36% at 10,000 83.96% after training on the complete set, the network with
samples, which is almost exactly the performance of 26.52%,000 neurons achieved an overall accuracy of 92.87%. Due
yielded by the statistical classier trained on the numbdr oto the size and computational time required to simulate these
events presented iBrchard et al. (2015aJ his suggests that the networks, only one trial of each experiment could be performed.
network requires only 10 output neurons to learn and respond to
the event counts. 3.2. Error Analysis of the SKIM Network

The gure also demonstrates the quick convergence of thés the networks used in this work make use of either random
network, with the accuracy stabilizing within 2000 samplesveights or random training orders, it is important to conduct
in almost every case, and often much earlier. There were nmultiple trials of each experiment to fully characterize the
problems resulting from over- tting, and the accuracy remad  networks and their performance. The results for classi catio
constant through the full 60,0000 training presentationiislis  tasks are often provided as either a mean accuracy, or a mean
signi cant, given the iterative nature of the training prsseand accuracy and standard deviation, and is a common practize
proves the viability of using the system in an online manner.  within the machine learning community.
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TABLE 2 | Results for classi cation of N-MNIST with larger hid den layer sizes.

Hidden Layer Size

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
81.51% 83.96% 85.6% 85.1% 86.6% 86.3% 88.6% 90.22% 91.56% 92.87%

This table shows results for SKIM networks with large numbers of hiddemyer neurons and trained on the full 60,000 training samples. Due to the time ken to train these large
networks, only a single trial of each was performed.

FIGURE 5 | Histograms of the distribution of errors and their C umulative Distribution Functions (CDF) for the Gaussian and E xponential training
patterns. The results were calculated over 51 independent trials of &b network. A comparison to the CDF of a Standard Normal distbution is included, and the
p-value for a one-sample Kolmogorov-Smirnov test providedgdemonstrating that both distributions are normally distbuted.

However, results presented in such a manner only fully Figure5 shows the distribution of accuracies for the
characterize the error distribution when the errors arematly  Exponential and Gaussian patterns for the 51 trials. A one-sampl
distributed, and this is often an implied assumption whenisig;t  Kolmogorov-Smirnov test was used to test the normality of the
results in such a fashion. This section explores and chaiaete distributions (Frank and Massey, 20),Zand the null hypothesis
the nature of the errors arising from a typical SKIM experiment was retained for both the Gaussian pattepi¥ 0.9347) and the
and attempts to validate this assumption for a typical SKIMExponential patterng D 0.9991).
network. All statistics reported use either the standaitést or Furthermore, applying the Lilliefor's composite goodness-of-
the pairedt-test as appropriate. t test of composite normality (illiefors, 196) (which itself

The network chosen to characterize was the SKIMs a specialized version of the Kolmogorov-Smirnov test) also
implementation with 1000 hidden layer neurons. This sameetained the null hypothesis that the data are normally dimtted
con guration was also used to explore the e ects of training(p > 0.5) for both patterns.
patterns and output determination methods as this network These results show that the output errors are normally
represents a good balance between accuracy and training tindstributed, and therefore are su ciently represented byeth
making it well suited to experiments that require multipleatis.  mean and standard deviation of the accuracies or error rates

Testing included the two variations of this network, making o
use of the Gaussian and Exponential training patterns. The-3- Effect of Training Pattern on SKIM
characterization involved 51 full tests with all 60,000y~ Networks
samples on each network, with only the random weight matrixFigure 6shows a comparison of the four output methods over 61
and training order varying from trial to trial. trials of a SKIM network consisting of 1000 hidden layer newwon

The networks with the Gaussian and Exponential patterngnd trained using a Gaussian training pattern with af 10 and
received the same random weights for each trial, and the Arem of 5. The network structure and training order remained
method of the output determination methods run on the sameconstant between each trial, with only the random input layer
network output. weights di ering from trail to trial. Each output determinain
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method ran on the same output for each trial, and calculatedvith the results expected for a network with 1000 hidden layer
classi cation accuracy in terms of percentage of digits ectly neurons. The experiments and tests (along with all otherfiig t
identi ed. section) make use of an output pattern of 10 time-steps in length
It is immediately and apparently clear from the gure that Figure 7 shows the results of the training the three training
the Area method produces the best result overpllq{ 0.01). patterns for the four output determination methods. The graph
The performance of the other two methods did not show anyshows the mean error rate across all sixty trials for eadhitrg
statistically dominance at the 5% signi cance level. pattern. These results indicate that the Flat training patter
The superior performance of the Area Method over theproduces the best results in every case except for the Max
Weighted Area method is an interesting result, and shows thadetermination method, and that the Gaussian method produces
the learning mechanism makes use of the whole training patter the worst result in every case.
and not simply the maximum value. As this method consistently Table 3 shows the mean accuracy and standard deviation
produces the best results, all experiments henceforth repist t resulting from the trials over sixty independent tests fol al

result unless otherwise speci ed. three training patterns. A di erence was not observed in the
performance of the area method under di erent training pattsrn
3.4. Effect of Output Determination Method (p D 0.091), but the performance of the Max method greatly

The same random weights and hidden layer alpha functions weigproved ( < 0.01). The standard deviation in the results did
maintained across all trials, with only the training patteraried not vary between the two output determination methods, and
across the tests. The classi ers all achieved accuraaiststent  remained consistent.

Further investigation into these results shows that théiahi
discontinuity present in the at and exponential patterns is
the primary source of the performance improvement. The
discontinuity produces a large and sudden spike in the error
signal for the update stage. The Gaussian method produces a
smooth error signal without any discontinuities, which hae
e ect of smoothing away the maximum peak. For this reason,
the Max method is least e ective when used with the Gaussian
pattern.

Figure 7 also demonstrates an important link between
training pattern and output determination method, and sugges
that the choice of training pattern determines the optimal puitt
determination method. The results show that the Area mettsod
the best choice when using a Gaussian training pattern, aad th
Max method produces the best results when using an exponential
training pattern. This makes sense when considering that the

FIGURE 6 | Comparison of the effects of the four different output area under the Gaussian training pattern is larger, and there
determination methods on classi cation accuracy with a Gauss ian . .

training pattern. The gure shows the distribution of classi cation accuracies mcrea_lses the_ total area unde.r the C_)UIPUI curve dun.ng_ rellmll
over 61 trials of a SKIM network with 1000 hidden layer neuron€Each a similar fashion, the sharp discontinuity, and resultimpgke in
network made use of the same random training order and hiddetayer the error signal, creates a more pronounced maximum value at
con guration, with only the random weights varying from triato trial. The the onset of the output pattern.

network made use of a Gaussian training pattern and uses theotir different

o S The at output pattern benets from the same e ects
classi cation methods shown in Figure 3.

from the sharp initial discontinuity, and also from the sharp

FIGURE 7 | Classi cation error when using different training patterns and output determination methods.
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TABLE 3 | Mean accuracies and standard deviation for the compar ison between the Exponential, Flat, and Gaussian training p  atterns.

Gaussian pattern Exponential pattern Flat pattern
Area (%) Max (%) Area (%) Max (%) Area (%) Max (%)
Mean 80.62 79.32 81.82 82.73 83.28 82.04
STD 0.42 0.49 0.45 0.40 0.45 0.51
Max 81.42 80.33 82.62 83.67 84.17 83.16
Min 79.41 77.88 81.12 81.82 82.36 81.06

This table presents a comparison of the different training patterns under botthe Area and Max output determination methods.

elements and the transfer functions lend themselves to atogn
implementation, and these results serve to prove the vigtolit
such an approach. A mixed-signal implementation of the SKIM
Training pattern Recommended output method algorithm should produce a power-e cient and fully spike-base
system, but requires that factors such as the size of theehidd

TABLE 4 | Recommended output determination methods for different
training patterns.

Gaussian pattern Area method layer and the nature of the transfer functions be xed at desi
Exponential pattern Max method time
Flat pattern Area or max method

This research serves to provide the rst steps in validating
the SKIM algorithm for real-world spike-based tasks, to previd
insight into the performance of varying network sizes, and to
demonstrate the scalability of the SKIM algorithm to reai+ld
tasks.

Implementing the SKIM network using digital circuitry adds
4. DISCUSSION additional complications as the outputs from the hidden layer

neurons require simulating regardless of the input activithe
This paper explores the use of the SKIM and OPIUM learningnding that the Exponential pattern produces the best results
methods applied to event-based vision systems and larger the Max Method is of particular signi cance as the Max
datasets and specically in the realm of digit classi cationMethod of output determination o ers the simplest and most
using an event-based camera. This work makes use of SKIflirect hardware implementation.
networks applied to the largest datasets to date, implementing Furthermore, the fact that the Exponential pattern starts at a
the largest hidden layer sizes and simultaneously trainingnaximum and then decays to zero opens up interesting methods
the largest number of output neurons. The success of thtor analytically calculating and comparing the outputs if the
classi ers built using these SKIM networks validates bdik t output weights are restricted to positive values only
underlying SKIM algorithm and its applicability to event- It is also possible to implement the SKIM algorithm on
based tasks such as the digit classi cation task presented @xisting large-scale neuromorphic hardware, such as SpiliiNak
this work. leveraging the existing routing and processing infrastioetto

The classi ers presented in this work also achieve the highegmplement the connectivity and transfer functions. In such a
accuracy on the N-MNIST dataset to date with an online tragnin system, the internal timing limits dictate the maximum raket
algorithm, and serves to further justify the use of SKIM as dhe hidden layer nodes can produce values, thereby placinitglim
means for learning in event-based systems. on the time resolution of the input spike patterns.

This paper also explores the use of di erent training patterns
and output determination methods on the N-MNIST dataset, AUTHOR CONTRIBUTIONS
and provides an analysis of the results, witble 4 presenting
a summary of the recommended output determination method$sC performed the research and wrote the article in conjunctio
for the training patterns introduced in this work. with GO. The vision aspects of the project were guided by RB and

One signicant nding arising from the comparison of SL and the learning mechanisms were guided by JT and AV. All
training patterns and output determination methods is thaeth parties assisted in both the research and writing of thisaede
Max method produces the best results when trained with an
exponential pattern. This is important as the Max method iISACKNOWLEDGMENTS
perhaps the simplest way of determining outputs in a system as
it requires only a comparison operation. This is an importantThe authors would like to thank the Merlion Programme of the
consideration as reductions in the complexity of the proagssi Institut Francais de Singapour, under administrative supson
at the output neurons can greatly simplify implementation sost of the French Ministry of Foreign A airs and the National
and reduce power consumption. University of Singapore, for facilitating the collaboratiohhe

The SKIM algorithm itself poses certain challenges to aiews and conclusions contained in this document are those
direct hardware implementation. The nature of the continsou of the authors and should not be interpreted as representing

negative error in the training signal resulting from the sed
discontinuity.
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